Source code for diffprivlib.mechanisms.geometric

# MIT License
#
# Copyright (C) IBM Corporation 2019
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
The classic geometric mechanism for differential privacy, and its derivatives.
"""
from numbers import Integral

import numpy as np

from diffprivlib.mechanisms.base import DPMechanism, TruncationAndFoldingMixin
from diffprivlib.utils import copy_docstring


[docs]class Geometric(DPMechanism): r""" The classic geometric mechanism for differential privacy, as first proposed by Ghosh, Roughgarden and Sundararajan. Extended to allow for non-unity sensitivity. Paper link: https://arxiv.org/pdf/0811.2841.pdf Parameters ---------- epsilon : float Privacy parameter :math:`\epsilon` for the mechanism. Must be in (0, ∞]. sensitivity : float, default: 1 The sensitivity of the mechanism. Must be in [0, ∞). """ def __init__(self, *, epsilon, sensitivity=1): super().__init__(epsilon=epsilon, delta=0.0) self.sensitivity = self._check_sensitivity(sensitivity) self._scale = - self.epsilon / self.sensitivity if self.sensitivity > 0 else - float("inf") @classmethod def _check_sensitivity(cls, sensitivity): if not isinstance(sensitivity, Integral): raise TypeError("Sensitivity must be an integer") if sensitivity < 0: raise ValueError("Sensitivity must be non-negative") return sensitivity def _check_all(self, value): super()._check_all(value) self._check_sensitivity(self.sensitivity) if not isinstance(value, Integral): raise TypeError("Value to be randomised must be an integer") @classmethod def _check_epsilon_delta(cls, epsilon, delta): if not delta == 0: raise ValueError("Delta must be zero") return super()._check_epsilon_delta(epsilon, delta)
[docs] @copy_docstring(DPMechanism.bias) def bias(self, value): return 0.0
[docs] @copy_docstring(DPMechanism.variance) def variance(self, value): self._check_all(value) leading_factor = (1 - np.exp(self._scale)) / (1 + np.exp(self._scale)) geom_series = np.exp(self._scale) / (1 - np.exp(self._scale)) return 2 * leading_factor * (geom_series + 3 * (geom_series ** 2) + 2 * (geom_series ** 3))
[docs] def randomise(self, value): """Randomise `value` with the mechanism. Parameters ---------- value : int The value to be randomised. Returns ------- int The randomised value. """ self._check_all(value) # Need to account for overlap of 0-value between distributions of different sign unif_rv = self._rng.random() - 0.5 unif_rv *= 1 + np.exp(self._scale) sgn = -1 if unif_rv < 0 else 1 # Use formula for geometric distribution, with ratio of exp(-epsilon/sensitivity) return int(np.round(value + sgn * np.floor(np.log(sgn * unif_rv) / self._scale)))
[docs]class GeometricTruncated(Geometric, TruncationAndFoldingMixin): r""" The truncated geometric mechanism, where values that fall outside a pre-described range are mapped back to the closest point within the range. Parameters ---------- epsilon : float Privacy parameter :math:`\epsilon` for the mechanism. Must be in (0, ∞]. sensitivity : float, default: 1 The sensitivity of the mechanism. Must be in [0, ∞). lower : int The lower bound of the mechanism. upper : int The upper bound of the mechanism. """ def __init__(self, *, epsilon, sensitivity=1, lower, upper): super().__init__(epsilon=epsilon, sensitivity=sensitivity) TruncationAndFoldingMixin.__init__(self, lower=lower, upper=upper) @classmethod def _check_bounds(cls, lower, upper): if not isinstance(lower, Integral) and abs(lower) != float("inf"): raise TypeError(f"Lower bound must be integer-valued, got {lower}") if not isinstance(upper, Integral) and abs(upper) != float("inf"): raise TypeError(f"Upper bound must be integer-valued, got {upper}") return super()._check_bounds(lower, upper) @copy_docstring(DPMechanism.bias) def bias(self, value): raise NotImplementedError @copy_docstring(DPMechanism.bias) def variance(self, value): raise NotImplementedError def _check_all(self, value): super()._check_all(value) TruncationAndFoldingMixin._check_all(self, value) return True
[docs] @copy_docstring(Geometric.randomise) def randomise(self, value): self._check_all(value) noisy_value = super().randomise(value) return int(np.round(self._truncate(noisy_value)))
[docs]class GeometricFolded(Geometric, TruncationAndFoldingMixin): r""" The folded geometric mechanism, where values outside a pre-described range are folded back toward the domain around the closest point within the domain. Half-integer bounds are permitted. Parameters ---------- epsilon : float Privacy parameter :math:`\epsilon` for the mechanism. Must be in (0, ∞]. sensitivity : float, default: 1 The sensitivity of the mechanism. Must be in [0, ∞). lower : int or float The lower bound of the mechanism. Must be integer or half-integer -valued. upper : int or float The upper bound of the mechanism. Must be integer or half-integer -valued. """ def __init__(self, *, epsilon, sensitivity=1, lower, upper): super().__init__(epsilon=epsilon, sensitivity=sensitivity) TruncationAndFoldingMixin.__init__(self, lower=lower, upper=upper) @classmethod def _check_bounds(cls, lower, upper): if not np.isclose(2 * lower, np.round(2 * lower)) or not np.isclose(2 * upper, np.round(2 * upper)): raise ValueError("Bounds must be integer or half-integer floats") return super()._check_bounds(lower, upper) def _fold(self, value): return super()._fold(int(np.round(value))) @copy_docstring(DPMechanism.bias) def bias(self, value): raise NotImplementedError @copy_docstring(DPMechanism.bias) def variance(self, value): raise NotImplementedError def _check_all(self, value): super()._check_all(value) TruncationAndFoldingMixin._check_all(self, value) return True
[docs] @copy_docstring(Geometric.randomise) def randomise(self, value): self._check_all(value) noisy_value = super().randomise(value) return int(np.round(self._fold(noisy_value)))