Source code for diffprivlib.mechanisms.bingham

# MIT License
#
# Copyright (C) IBM Corporation 2019
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
The Bingham mechanism in differential privacy, for estimating the first eigenvector of a covariance matrix.
"""
import secrets
from numbers import Real

import numpy as np

from diffprivlib.mechanisms.base import DPMechanism
from diffprivlib.utils import copy_docstring


[docs] class Bingham(DPMechanism): r""" The Bingham mechanism in differential privacy. Used to estimate the first eigenvector (associated with the largest eigenvalue) of a covariance matrix. Paper link: http://eprints.whiterose.ac.uk/123206/7/simbingham8.pdf Parameters ---------- epsilon : float Privacy parameter :math:`\epsilon` for the mechanism. Must be in (0, ∞]. sensitivity : float, default: 1 The sensitivity of the mechanism. Must be in [0, ∞). random_state : int or RandomState, optional Controls the randomness of the mechanism. To obtain a deterministic behaviour during randomisation, ``random_state`` has to be fixed to an integer. """ def __init__(self, *, epsilon, sensitivity=1.0, random_state=None): super().__init__(epsilon=epsilon, delta=0, random_state=random_state) self.sensitivity = self._check_sensitivity(sensitivity) if isinstance(self._rng, secrets.SystemRandom): self._rng = np.random.default_rng() @classmethod def _check_epsilon_delta(cls, epsilon, delta): if not delta == 0: raise ValueError("Delta must be zero") return super()._check_epsilon_delta(epsilon, delta) @classmethod def _check_sensitivity(cls, sensitivity): if not isinstance(sensitivity, Real): raise TypeError("Sensitivity must be numeric") if sensitivity < 0: raise ValueError("Sensitivity must be non-negative") return float(sensitivity) def _check_all(self, value): super()._check_all(value) self._check_sensitivity(self.sensitivity) if not isinstance(value, np.ndarray): raise TypeError(f"Value to be randomised must be a numpy array, got {type(value)}") if value.ndim != 2: raise ValueError(f"Array must be 2-dimensional, got {value.ndim} dimensions") if value.shape[0] != value.shape[1]: raise ValueError(f"Array must be square, got {value.shape[0]} x {value.shape[1]}") if not np.allclose(value, value.T): raise ValueError("Array must be symmetric, supplied array is not.") return True @copy_docstring(DPMechanism.bias) def bias(self, value): raise NotImplementedError @copy_docstring(DPMechanism.variance) def variance(self, value): raise NotImplementedError
[docs] def randomise(self, value): """Randomise `value` with the mechanism. Parameters ---------- value : numpy array The data to be randomised. Returns ------- numpy array The randomised eigenvector. """ self._check_all(value) eigvals, eigvecs = np.linalg.eigh(value) dims = value.shape[0] if dims == 1: return np.ones((1, 1)) if self.sensitivity / self.epsilon == 0: return eigvecs[:, eigvals.argmax()] value_translated = self.epsilon * (eigvals.max() * np.eye(dims) - value) / 4 / self.sensitivity translated_eigvals = np.linalg.eigvalsh(value_translated) left, right, mid = 1, dims, (1 + dims) / 2 old_interval_size = (right - left) * 2 while right - left < old_interval_size: old_interval_size = right - left mid = (right + left) / 2 f_mid = np.array([1 / (mid + 2 * eig) for eig in translated_eigvals]).sum() if f_mid <= 1: right = mid if f_mid >= 1: left = mid b_const = mid omega = np.eye(dims) + 2 * value_translated / b_const omega_inv = np.linalg.inv(omega) norm_const = np.exp(-(dims - b_const) / 2) * ((dims / b_const) ** (dims / 2)) while True: rnd_vec = self._rng.multivariate_normal(np.zeros(dims), omega_inv / 4, size=4).sum(axis=0) unit_vec = rnd_vec / np.linalg.norm(rnd_vec) prob = np.exp(-unit_vec.dot(value_translated).dot(unit_vec)) / norm_const\ / ((unit_vec.dot(omega).dot(unit_vec)) ** (dims / 2)) if self._rng.random() <= prob: return unit_vec