Source code for diffprivlib.mechanisms.staircase

# MIT License
#
# Copyright (C) IBM Corporation 2019
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
The staircase mechanism in differential privacy.
"""
import secrets
from numbers import Real

import numpy as np

from diffprivlib.mechanisms.laplace import Laplace
from diffprivlib.utils import copy_docstring


[docs] class Staircase(Laplace): r""" The staircase mechanism in differential privacy. The staircase mechanism is an optimisation of the classical Laplace Mechanism (:class:`.Laplace`), described as a "geometric mixture of uniform random variables". Paper link: https://arxiv.org/pdf/1212.1186.pdf Parameters ---------- epsilon : float Privacy parameter :math:`\epsilon` for the mechanism. Must be in (0, ∞]. sensitivity : float The sensitivity of the mechanism. Must be in [0, ∞). gamma : float, default: 1 / (1 + exp(epsilon/2)) Value of the tuning parameter gamma for the mechanism. Must be in [0, 1]. random_state : int or RandomState, optional Controls the randomness of the mechanism. To obtain a deterministic behaviour during randomisation, ``random_state`` has to be fixed to an integer. """ def __init__(self, *, epsilon, sensitivity, gamma=None, random_state=None): super().__init__(epsilon=epsilon, delta=0, sensitivity=sensitivity, random_state=random_state) self.gamma = self._check_gamma(gamma, epsilon=self.epsilon) if isinstance(self._rng, secrets.SystemRandom): self._rng = np.random.default_rng() @classmethod def _check_gamma(cls, gamma, epsilon=None): if gamma is None and epsilon is not None: gamma = 1 / (1 + np.exp(epsilon / 2)) if not isinstance(gamma, Real): raise TypeError("Gamma must be numeric") if not 0.0 <= gamma <= 1.0: raise ValueError("Gamma must be in [0,1]") return float(gamma) @copy_docstring(Laplace._check_all) def _check_all(self, value): super()._check_all(value) self._check_gamma(self.gamma) return True @classmethod def _check_epsilon_delta(cls, epsilon, delta): if not delta == 0: raise ValueError("Delta must be zero") return super()._check_epsilon_delta(epsilon, delta)
[docs] @copy_docstring(Laplace.bias) def bias(self, value): return 0.0
@copy_docstring(Laplace.variance) def variance(self, value): raise NotImplementedError
[docs] @copy_docstring(Laplace.randomise) def randomise(self, value): self._check_all(value) sign = -1 if self._rng.random() < 0.5 else 1 geometric_rv = self._rng.geometric(1 - np.exp(- self.epsilon)) - 1 unif_rv = self._rng.random() binary_rv = 0 if self._rng.random() < self.gamma / (self.gamma + (1 - self.gamma) * np.exp(- self.epsilon)) else 1 return value + sign * ((1 - binary_rv) * ((geometric_rv + self.gamma * unif_rv) * self.sensitivity) + binary_rv * ((geometric_rv + self.gamma + (1 - self.gamma) * unif_rv) * self.sensitivity))