Source code for diffprivlib.models.forest

# MIT License
#
# Copyright (C) IBM Corporation 2021
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Random Forest Classifier with Differential Privacy
"""
from collections import namedtuple
import warnings

from joblib import Parallel, delayed
import numpy as np
from sklearn.exceptions import DataConversionWarning
from sklearn.tree._tree import Tree, DOUBLE, DTYPE, NODE_DTYPE  # pylint: disable=no-name-in-module
from sklearn.ensemble._forest import RandomForestClassifier as skRandomForestClassifier, _parallel_build_trees
from sklearn.tree import DecisionTreeClassifier as skDecisionTreeClassifier

from diffprivlib.accountant import BudgetAccountant
from diffprivlib.utils import PrivacyLeakWarning, check_random_state
from diffprivlib.mechanisms import PermuteAndFlip
from diffprivlib.validation import DiffprivlibMixin

MAX_INT = np.iinfo(np.int32).max


[docs] class RandomForestClassifier(skRandomForestClassifier, DiffprivlibMixin): # pylint: disable=too-many-ancestors r"""Random Forest Classifier with differential privacy. This class implements Differentially Private Random Decision Forests using [1]. :math:`\epsilon`-Differential privacy is achieved by constructing decision trees via random splitting criterion and applying the :class:`.PermuteAndFlip` Mechanism to determine a noisy label. Parameters ---------- n_estimators : int, default: 10 The number of trees in the forest. epsilon : float, default: 1.0 Privacy parameter :math:`\epsilon`. bounds : tuple, optional Bounds of the data, provided as a tuple of the form (min, max). `min` and `max` can either be scalars, covering the min/max of the entire data, or vectors with one entry per feature. If not provided, the bounds are computed on the data when ``.fit()`` is first called, resulting in a :class:`.PrivacyLeakWarning`. classes : array-like of shape (n_classes,) Array of classes to be trained on. If not provided, the classes will be read from the data when ``.fit()`` is first called, resulting in a :class:`.PrivacyLeakWarning`. n_jobs : int, default: 1 Number of CPU cores used when parallelising over classes. ``-1`` means using all processors. verbose : int, default: 0 Set to any positive number for verbosity. random_state : int or RandomState, optional Controls both the randomness of the shuffling of the samples used when building trees (if ``shuffle=True``) and training of the differentially-private :class:`.DecisionTreeClassifier` to construct the forest. To obtain a deterministic behaviour during randomisation, ``random_state`` has to be fixed to an integer. accountant : BudgetAccountant, optional Accountant to keep track of privacy budget. max_depth : int, default: 5 The maximum depth of the tree. The depth translates to an exponential increase in memory usage. warm_start : bool, default=False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. shuffle : bool, default=False When set to ``True``, shuffles the datapoints to be trained on trees at random. In diffprivlib, each datapoint is used to train exactly one tree. When set to ``False``, datapoints are chosen in-order to their tree in sequence. Attributes ---------- estimator_ : DecisionTreeClassifier The child estimator template used to create the collection of fitted sub-estimators. estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : ndarray of shape (n_classes,) or a list of such arrays The classes labels. n_classes_ : int or list The number of classes. n_features_in_ : int Number of features seen during :term:`fit`. feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. n_outputs_ : int The number of outputs when ``fit`` is performed. Examples -------- >>> from sklearn.datasets import make_classification >>> from diffprivlib.models import RandomForestClassifier >>> X, y = make_classification(n_samples=1000, n_features=4, ... n_informative=2, n_redundant=0, ... random_state=0, shuffle=False) >>> clf = RandomForestClassifier(n_estimators=100, random_state=0) >>> clf.fit(X, y) >>> print(clf.predict([[0, 0, 0, 0]])) [1] References ---------- [1] Sam Fletcher, Md Zahidul Islam. "Differentially Private Random Decision Forests using Smooth Sensitivity" https://arxiv.org/abs/1606.03572 """ _parameter_constraints = DiffprivlibMixin._copy_parameter_constraints( skRandomForestClassifier, "n_estimators", "n_jobs", "verbose", "random_state", "warm_start") def __init__(self, n_estimators=10, *, epsilon=1.0, bounds=None, classes=None, n_jobs=1, verbose=0, accountant=None, random_state=None, max_depth=5, warm_start=False, shuffle=False, **unused_args): super().__init__( n_estimators=n_estimators, criterion=None, bootstrap=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.epsilon = epsilon self.bounds = bounds self.classes = classes self.max_depth = max_depth self.shuffle = shuffle self.accountant = BudgetAccountant.load_default(accountant) # Todo: Remove when scikit-learn v1.2 is a min requirement if hasattr(self, "estimator"): self.estimator = DecisionTreeClassifier() else: self.base_estimator = DecisionTreeClassifier() self.estimator_params = ("max_depth", "epsilon", "bounds", "classes") self._warn_unused_args(unused_args)
[docs] def fit(self, X, y, sample_weight=None): """ Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. y : array-like of shape (n_samples,) The target values (class labels in classification, real numbers in regression). sample_weight : ignored Ignored by diffprivlib. Present for consistency with sklearn API. Returns ------- self : object Fitted estimator. """ self._validate_params() self.accountant.check(self.epsilon, 0) if sample_weight is not None: self._warn_unused_args("sample_weight") # Validate or convert input data X, y = self._validate_data(X, y, multi_output=False, dtype=DTYPE) if self.bounds is None: warnings.warn("Bounds have not been specified and will be calculated on the data provided. This will " "result in additional privacy leakage. To ensure differential privacy and no additional " "privacy leakage, specify bounds for each dimension.", PrivacyLeakWarning) self.bounds = (np.min(X, axis=0), np.max(X, axis=0)) self.bounds = self._check_bounds(self.bounds, shape=X.shape[1]) X = self._clip_to_bounds(X, self.bounds) y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warnings.warn("A column-vector y was passed when a 1d array was expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if self.classes is None: warnings.warn("Classes have not been specified and will be calculated on the data provided. This will " "result in additional privacy leakage. To ensure differential privacy and no additional " "privacy leakage, specify the prediction classes for model.", PrivacyLeakWarning) self.classes = np.unique(y) self.classes_ = np.ravel(self.classes) self.n_classes_ = len(self.classes_) # y, expanded_class_weight = self._validate_y_class_weight(y) y = np.searchsorted(self.classes_, y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters self._validate_estimator() random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError(f"n_estimators={self.n_estimators} must be larger or equal to len(estimators_)=" f"{len(self.estimators_)} when warm_start==True") if n_more_estimators == 0: warnings.warn("Warm-start fitting without increasing n_estimators does not fit new trees.") return self if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [ self._make_estimator(append=False, random_state=random_state) for _ in range(n_more_estimators) ] # Split samples between trees as evenly as possible (randomly if shuffle==True) n_samples = X.shape[0] tree_idxs = random_state.permutation(n_samples) if self.shuffle else np.arange(n_samples) tree_idxs = (tree_idxs // (n_samples / n_more_estimators)).astype(int) # Parallel loop: we prefer the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading more efficient than multiprocessing in # that case. However, for joblib 0.12+ we respect any # parallel_backend contexts set at a higher level, # since correctness does not rely on using threads. # Todo: Remove when scikit-learn v1.1 is a min requirement try: trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, prefer="threads")( delayed(_parallel_build_trees)( tree=t, bootstrap=False, X=X[tree_idxs == i], y=y[tree_idxs == i], sample_weight=None, tree_idx=i, n_trees=len(trees), verbose=self.verbose, ) for i, t in enumerate(trees) ) except TypeError: trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, prefer="threads")( delayed(_parallel_build_trees)( tree=t, forest=self, X=X[tree_idxs == i], y=y[tree_idxs == i], sample_weight=None, tree_idx=i, n_trees=len(trees), verbose=self.verbose, ) for i, t in enumerate(trees) ) # Collect newly grown trees self.estimators_.extend(trees) self.accountant.spend(self.epsilon, 0) return self
[docs] class DecisionTreeClassifier(skDecisionTreeClassifier, DiffprivlibMixin): r"""Decision Tree Classifier with differential privacy. This class implements the base differentially private decision tree classifier for the Random Forest classifier algorithm. Not meant to be used separately. Parameters ---------- max_depth : int, default: 5 The maximum depth of the tree. epsilon : float, default: 1.0 Privacy parameter :math:`\epsilon`. bounds : tuple, optional Bounds of the data, provided as a tuple of the form (min, max). `min` and `max` can either be scalars, covering the min/max of the entire data, or vectors with one entry per feature. If not provided, the bounds are computed on the data when ``.fit()`` is first called, resulting in a :class:`.PrivacyLeakWarning`. classes : array-like of shape (n_classes,), optional Array of class labels. If not provided, the classes will be read from the data when ``.fit()`` is first called, resulting in a :class:`.PrivacyLeakWarning`. random_state : int or RandomState, optional Controls the randomness of the estimator. At each split, the feature to split on is chosen randomly, as is the threshold at which to split. The classification label at each leaf is then randomised, subject to differential privacy constraints. To obtain a deterministic behaviour during randomisation, ``random_state`` has to be fixed to an integer. accountant : BudgetAccountant, optional Accountant to keep track of privacy budget. Attributes ---------- n_features_in_: int The number of features when fit is performed. n_classes_: int The number of classes. classes_: array of shape (n_classes, ) The class labels. """ _parameter_constraints = DiffprivlibMixin._copy_parameter_constraints( skDecisionTreeClassifier, "max_depth", "random_state") def __init__(self, max_depth=5, *, epsilon=1, bounds=None, classes=None, random_state=None, accountant=None, criterion=None, **unused_args): # Todo: Remove when scikit-learn v1.0 is a min requirement try: super().__init__( # pylint: disable=unexpected-keyword-arg criterion=None, splitter=None, max_depth=max_depth, min_samples_split=None, min_samples_leaf=None, min_weight_fraction_leaf=None, max_features=None, random_state=random_state, max_leaf_nodes=None, min_impurity_decrease=None, min_impurity_split=None ) except TypeError: super().__init__( criterion=None, splitter=None, max_depth=max_depth, min_samples_split=None, min_samples_leaf=None, min_weight_fraction_leaf=None, max_features=None, random_state=random_state, max_leaf_nodes=None, min_impurity_decrease=None ) self.epsilon = epsilon self.bounds = bounds self.classes = classes self.accountant = BudgetAccountant.load_default(accountant) if criterion is not None: unused_args['criterion'] = criterion self._warn_unused_args(unused_args)
[docs] def fit(self, X, y, sample_weight=None, check_input=True): """Build a differentially-private decision tree classifier from the training set (X, y). Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. Internally, it will be converted to ``dtype=np.float32``. y : array-like of shape (n_samples,) The target values (class labels) as integers or strings. sample_weight : ignored Ignored by diffprivlib. Present for consistency with sklearn API. check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : DecisionTreeClassifier Fitted estimator. """ self._validate_params() random_state = check_random_state(self.random_state) self.accountant.check(self.epsilon, 0) if sample_weight is not None: self._warn_unused_args("sample_weight") if check_input: X, y = self._validate_data(X, y, multi_output=False) self.n_outputs_ = 1 if self.bounds is None: warnings.warn("Bounds have not been specified and will be calculated on the data provided. This will " "result in additional privacy leakage. To ensure differential privacy and no additional " "privacy leakage, specify bounds for each dimension.", PrivacyLeakWarning) self.bounds = (np.min(X, axis=0), np.max(X, axis=0)) self.bounds = self._check_bounds(self.bounds, shape=X.shape[1]) X = self._clip_to_bounds(X, self.bounds) if self.classes is None: warnings.warn("Classes have not been specified and will be calculated on the data provided. This will " "result in additional privacy leakage. To ensure differential privacy and no additional " "privacy leakage, specify the prediction classes for model.", PrivacyLeakWarning) self.classes = np.unique(y) self.classes_ = np.ravel(self.classes) self.n_classes_ = len(self.classes_) self.n_features_in_ = X.shape[1] # Build and fit the _FittingTree fitting_tree = _FittingTree(self.max_depth, self.n_features_in_, self.classes_, self.epsilon, self.bounds, random_state) fitting_tree.build() fitting_tree.fit(X, y) # Load params from _FittingTree into sklearn.Tree d = fitting_tree.__getstate__() tree = Tree(self.n_features_in_, np.array([self.n_classes_]), self.n_outputs_) tree.__setstate__(d) self.tree_ = tree self.accountant.spend(self.epsilon, 0) return self
def _fit(self, X, y, sample_weight=None, check_input=True, missing_values_in_feature_mask=None): self.fit(X, y, sample_weight=sample_weight, check_input=check_input) return self @property def n_features_(self): return self.n_features_in_ def _more_tags(self): return {}
class _FittingTree(DiffprivlibMixin): r"""Array-based representation of a binary decision tree, trained with differential privacy. This tree mimics the architecture of the corresponding Tree from sklearn.tree.tree_, but without many methods given in Tree. The purpose of _FittingTree is to fit the parameters of the model, and have those parameters passed to Tree (using _FittingTree.__getstate__() and Tree.__setstate__()), to be used for prediction. Parameters ---------- max_depth : int The maximum depth of the tree. n_features : int The number of features of the training dataset. classes : array-like of shape (n_classes,) The classes of the training dataset. epsilon : float Privacy parameter :math:`\epsilon`. bounds : tuple Bounds of the data, provided as a tuple of the form (min, max). `min` and `max` can either be scalars, covering the min/max of the entire data. random_state : RandomState Controls the randomness of the building and training process: the feature to split at each node, the threshold to split at and the randomisation of the label at each leaf. """ _TREE_LEAF = -1 _TREE_UNDEFINED = -2 StackNode = namedtuple("StackNode", ["parent", "is_left", "depth", "bounds"]) def __init__(self, max_depth, n_features, classes, epsilon, bounds, random_state): self.node_count = 0 self.nodes = [] self.max_depth = max_depth self.n_features = n_features self.classes = classes self.epsilon = epsilon self.bounds = bounds self.random_state = random_state def __getstate__(self): """Get state of _FittingTree to feed into __setstate__ of sklearn.Tree""" d = {"max_depth": self.max_depth, "node_count": self.node_count, "nodes": np.array([tuple(node) for node in self.nodes], dtype=NODE_DTYPE), "values": self.values_} return d def build(self): """Build the decision tree using random feature selection and random thresholding.""" stack = [self.StackNode(parent=self._TREE_UNDEFINED, is_left=False, depth=0, bounds=self.bounds)] while stack: parent, is_left, depth, bounds = stack.pop() node_id = self.node_count bounds_lower, bounds_upper = self._check_bounds(bounds, shape=self.n_features) # Update parent node with its child if parent != self._TREE_UNDEFINED: if is_left: self.nodes[parent].left_child = node_id else: self.nodes[parent].right_child = node_id # Check if we have a leaf node, then add it if depth >= self.max_depth: node = _Node(node_id, self._TREE_UNDEFINED, self._TREE_UNDEFINED) node.left_child = self._TREE_LEAF node.right_child = self._TREE_LEAF self.nodes.append(node) self.node_count += 1 continue # We have a decision node, so pick feature and threshold feature = self.random_state.randint(self.n_features) threshold = self.random_state.uniform(bounds_lower[feature], bounds_upper[feature]) left_bounds_upper = bounds_upper.copy() left_bounds_upper[feature] = threshold right_bounds_lower = bounds_lower.copy() right_bounds_lower[feature] = threshold self.nodes.append(_Node(node_id, feature, threshold)) self.node_count += 1 stack.append(self.StackNode(parent=node_id, is_left=True, depth=depth+1, bounds=(bounds_lower, left_bounds_upper))) stack.append(self.StackNode(parent=node_id, is_left=False, depth=depth+1, bounds=(right_bounds_lower, bounds_upper))) return self def fit(self, X, y): """Fit the tree to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. """ if not self.nodes: raise ValueError("Fitting Tree must be built before calling fit().") leaves = self.apply(X) unique_leaves = np.unique(leaves) values = np.zeros(shape=(self.node_count, 1, len(self.classes))) # Populate value of real leaves for leaf in unique_leaves: idxs = (leaves == leaf) leaf_y = y[idxs] counts = [np.sum(leaf_y == cls) for cls in self.classes] mech = PermuteAndFlip(epsilon=self.epsilon, sensitivity=1, monotonic=True, utility=counts, random_state=self.random_state) values[leaf, 0, mech.randomise()] = 1 # Populate value of empty leaves for node in self.nodes: if values[node.node_id].sum() or node.left_child != self._TREE_LEAF: continue values[node.node_id, 0, self.random_state.randint(len(self.classes))] = 1 self.values_ = values return self def apply(self, X): """Finds the terminal region (=leaf node) for each sample in X.""" n_samples = X.shape[0] out = np.zeros((n_samples,), dtype=int) out_ptr = out.data for i in range(n_samples): node = self.nodes[0] while node.left_child != self._TREE_LEAF: if X[i, node.feature] <= node.threshold: node = self.nodes[node.left_child] else: node = self.nodes[node.right_child] out_ptr[i] = node.node_id return out class _Node: """Base storage structure for the nodes in a _FittingTree object.""" def __init__(self, node_id, feature, threshold): self.feature = feature self.threshold = threshold self.left_child = -1 self.right_child = -1 self.node_id = node_id def __iter__(self): """Defines parameters needed to populate NODE_DTYPE for Tree.__setstate__ using tuple(_Node).""" yield self.left_child yield self.right_child yield self.feature yield self.threshold yield 0.0 # Impurity yield 0 # n_node_samples yield 0.0 # weighted_n_node_samples # remove branch when scikit-learn v1.3 is min requirement if len(NODE_DTYPE) > 7: yield False